

Associate Laboratory for Sustainability and Technology in Mountain Regions

G. Colucci^{1,2,3,4}, A. Santamaria-Echart^{1,2}, S. C. Silva^{1,2,3,4}, L. G. Teixeira^{1,2,3,4}, A. Ribeiro^{3,4}, A. E. Rodrigues^{3,4}, M. F. Barreiro^{1,2*}

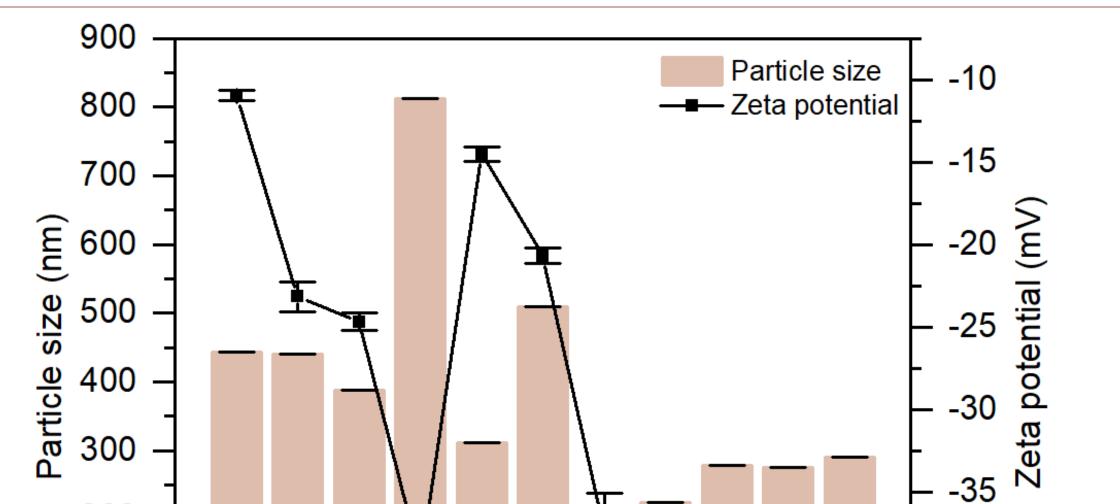
¹Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253, Bragança, Portugal
²Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
³Laboratory of Separation and Reaction Engineering (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias S/N, 4200-465, Porto, Portugal
⁴Associate Laboratory in Chemical Engineering (ALICE), Faculdade de Engenharia, Universidade do Porto, R. Dr. Roberto Frias, S/N, 4200-465, Porto, Portugal.

*barreiro@ipb.pt

Production of colloidal lignin particles: a statistical study

PORTO

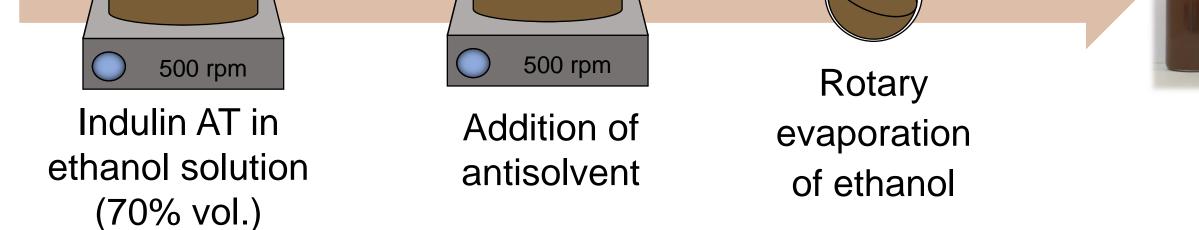
FACULDADE DE ENGENHARIA


UNIVERSIDADE DO PORTO

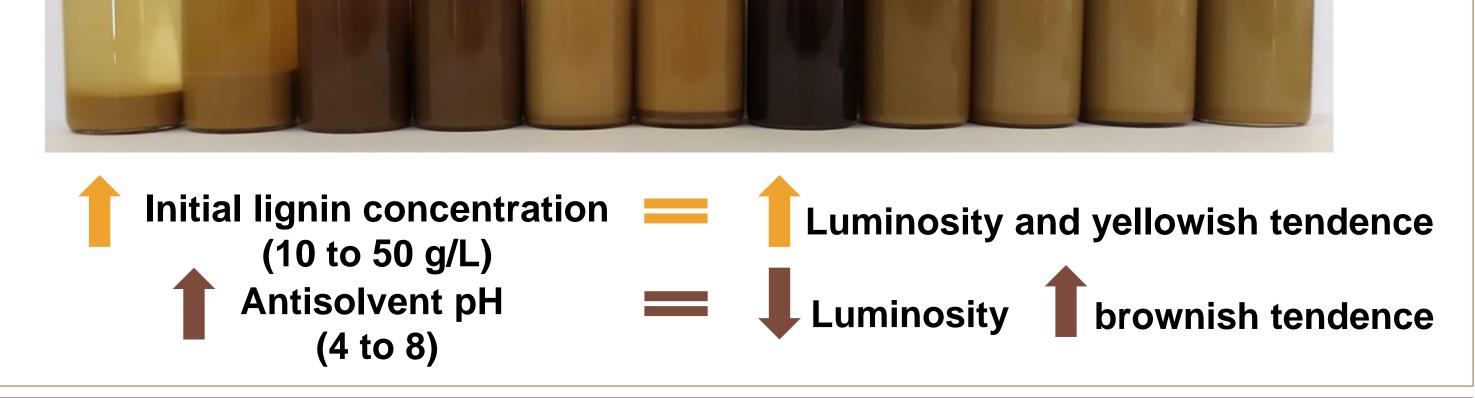
CM

Motivation and Objectives

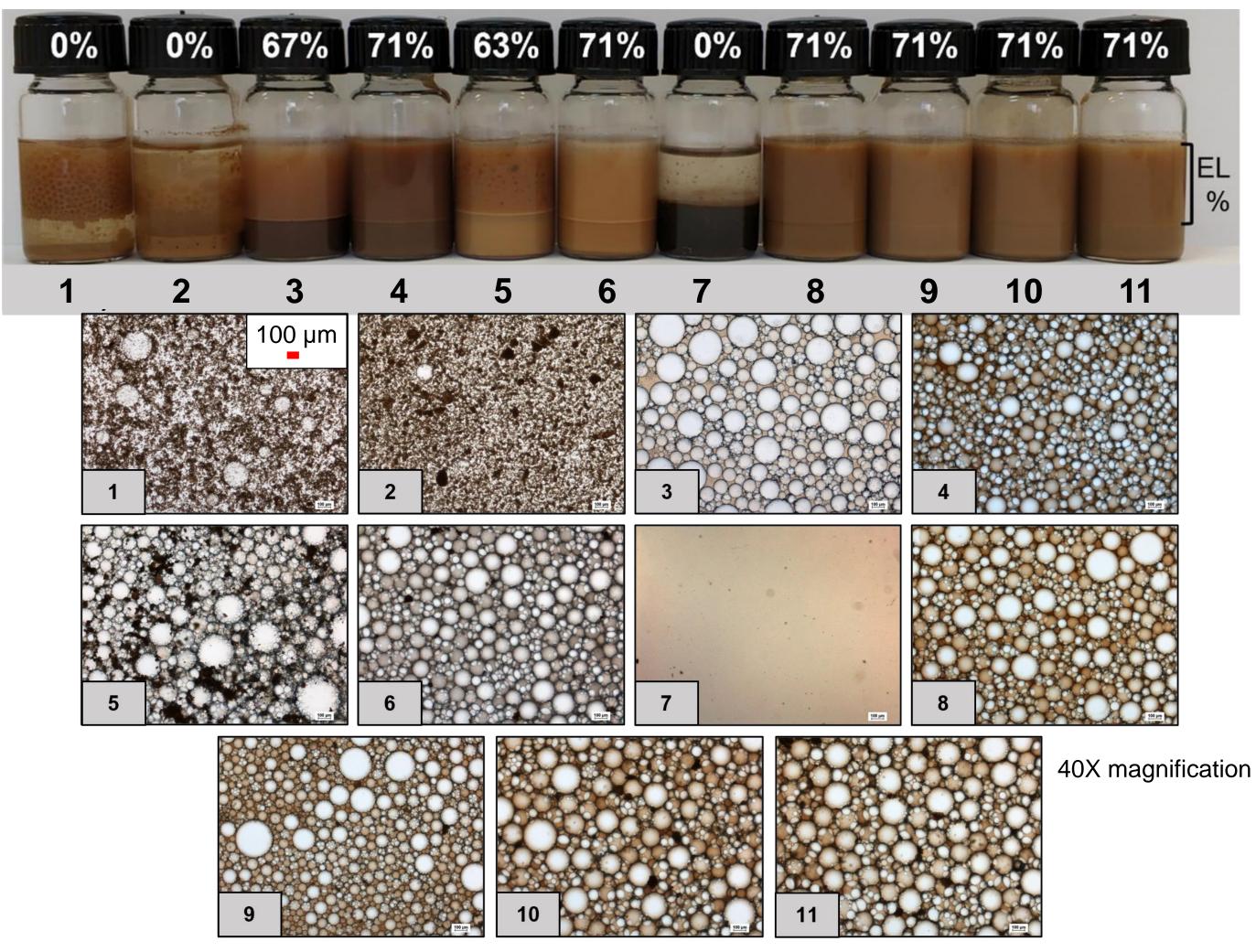
The development of colloidal lignin particles (CLPs) is a promising strategy to overcome the challenges of lignin application, such as its poor water solubility [1]. The antisolvent precipitation is a widely used technique to produce CLPs, presenting several advantages, however, studies using this technique present some drawbacks.



Particle Size and Zeta Potential


concentration	$200 - \qquad \qquad$				
High particle yield					
Toxic solvents	0				
Controllable size and morphology	1 2 3 4 5 6 7 8 9 10 11 CLPs				
	Effect Analysis (FFD 2 ⁴⁻¹) Particle size Zeta potential				
Low cost	Effect (nm) p (<0.10)				
	Curvature -234.64 0.2952 -21.54 0.0057				
To produce concentrated and stable CLPs through the antisolvent precipitation technique	Initial lignin concentration (10 to 50 g/L) 196.03 0.1205* -9.10 0.0135				
antisolvent precipitation technique	Antisolvent pH (4 to 8) -54.53 0.6252 -18.27 0.0007				
Increase knowledge on process variables and their effects on particle characteristics	Final ethanol concentration (15 to 45%) -244.03 0.0674 -3.91 0.1689				
	Antisolvent addition rate (6 to 14 mL/min) -115.48 0.3209 1.26 0.6259				
*Considering the proximity of 0.1205 with the p-value significance level of 0.10 (10%), the initial lignin concentration was considered a significant factor for the particle size response.					
Production of CLPs [1]	Color of CLPs				

CLPs


Study of process variables effects Fractional Factorial Design (FFD) 2⁴⁻¹

	Decodified values				
Assay	Initial lignin concentration (g/L)	Antisolvent pH	Final ethanol concentration (% volume)	Antisolvent addition rate (mL/min)	
1	10	4	15	6	
2	50	4	15	14	
3	10	8	15	14	
4	50	8	15	6	
5	10	4	45	14	
6	50	4	45	6	
7	10	8	45	6	
8	50	8	45	14	
9	30	6	30	10	
10	30	6	30	10	
11	30	6	30	10	

Emulsifying Potential

Mixtures of CLPs and Miglyol 812 (50/50 vol.) EL% indicates the percentage of emulsified layer formed for each sample

Responses

- Particle size (Laser Diffraction Analysis, D50 number-based distribution)
- Zeta potential (Nano-ZS Zetasizer)
- Color (Colorimeter CR-400 Konica Minolta, L*a*b* CIELAB space)
- Emulsifying potential (Mixture of CLPs and Miglyol 812, vortex for 1 minute).
 Emulsified Layer (EL %) calculated as Equation 1:

$$EL\% = \frac{Emulsion_{height}}{Total_{height}} \times 100$$
 (1)

Conclusions and Future Work

- The antisolvent pH and initial lignin concentration were significant variables affecting the stability, size, and color of CLPs.
- It was possible to produce stable CLPs at a concentration up to 50 g/L
 CLPs presented high potential as Pickering emulsions stabilizers

Ongoing/Future work: production of Pickering emulsions using CLPs as stabilizers for bio-based applications.

 Only CLPs 1, 2 and 7 were not able to form an emulsified layer, due to particle instability (CLPs 1 and 2) or low particle size and concentration (CLPs 7)

References and Acknowledgments

Acknowledgments. CIMO (UIDB/00690/2020 and UIDP/00690/2020), SusTEC (LA/P/0007/2021), LSRE-LCM (UIDB/50020/2020 and UIDP/00690/2020), and ALiCE (LA/P/0045/2020) funded by FCT/MCTES (PIDDAC). FCT for the program-contract of A. Santamaria-Echart and PhD grants of G. Colucci (2021.05215.BD), S. C. Silva (SFRH/BD/148281/2019), and L. G. Teixeira (2020.08803.BD). IngevityTM for supplying Indulin AT. COST Action LignoCOST (CA17128) in promoting exchange of knowledge in the field of lignin valorization.

References. [1] Colucci, G., Santamaria-Echart, A., Silva, S. C., Teixeira, L. G., Ribeiro, A., Rodrigues, A. E., Barreiro, M. F. Colloids Surf. A: Physicochem. Eng. Asp., **666** (2023) 131287.