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The thermochemical 

conversion of lignin into 

different added-value 

carbon materials 

constitutes an alternative 

approach for valorization of 

this co-product that can be 

integrated in pulping and 

biorefinery processes. Such 

approach is based on the 

relatively high carbon 

content and the abundance 

of aromatic rings in the 

structure of raw and 

technical lignins. 

The use of different 

electrospinning

configurations (i.e. coaxial 

and triaxial needles) is the 

key for enabling a steady 

production of microsized

lignin spheres, fibers and 

tubes. 

Metal nanoparticles can be 

casted into the carbon 

fibers by adding the 

metallic precursor in the 

lignin solution, enabling the 

preparation of carbon-

supported catalysts and 

electrocatalysts in fibrillary 

morphology in a one-step 

procedure. 

Carbons with hierarchical 

pore structure have been 

also obtained from lignin 

using hard templating 

techniques with different 

type of zeolites.

When alkalis are found in 

the parent lignin, physical 

activation with CO2 is 

promoted. The presence of 

metal ions on the surface of 

the resulting activated 

carbons can serve as active 

phase for catalysis 

applications. 

Preparation of binderless

activated carbon monoliths 

from lignin is feasible by 

extrusion of H3PO4-lignin 

mixtures, obtaining porous 

monoliths with different 

number of channels.

Our research group is 

offering expertise in the 

preparation of carbon-

based catalysts for lignin 

catalytic conversion into 

chemicals and bioproducts. 

These carbon-based 

catalysts can be prepared 

from lignin itself, increasing 

the sustainability and 

independence of such

processes.
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▪ Morphology is governed by 

voltage. 

▪ Tubes can be obtained injecting 

oil through an inner needle.

▪ Metals can be loaded on the 

carbon fiber surface by adding 

salt into the lignin solution
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Infiltration

Carbonization

• Tubular Furnace

• 150 cm3 STP/min N2

• 10ºC/min

• 700 °C 2h

Removal of 
the zeolite

• Stirring in NaOH 6M, 24hours, reflux 

• Rinse with distilled water

• Drying, 24h, 60°C

• Lignin (50% wt) in ethanol

• Add zeolites Y or β in NH4-form

• Stirring, 1 h, 20 ºC

• Solvent evaporation, 24 h, 60ºC

Template
SBET

(m2/g)

Vmes

(cm3/g)

VDR

(cm3/g) 

Y-zeolite 950 0.15 0.35

β-zeolite 865 0.85 0.32
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Our research group is currently focused on the preparation of carbon-based 

catalysts from lignin for syngas upgrading, catalytic pyrolysis, lignin 

depolymerization, steam reforming and Fischer-Tropsch synthesis 

For more than 25 years, TERMA group from 

University of Malaga have explored lignin 

valorization through the preparation of 

different carbon materials

Electrospinning Stabilization Carbonization

•Acell Lignin 

Ethanol 

solution 50%

•Outer needle: 

Ethanol 

solution 

•Air 200 ºC

•72 hours

•Can be

shortened 

adding H3PO4

•Nitrogen 

600- 1000 ºC

•Higher

temperatures

for mechanical

properties
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❖POROUS CARBON MONOLITHS BY EXTRUSION

❖ACTIVATED CARBONS BY PHYSICAL ACTIVATION (SEE POSTER OF GARCIA-ROLLAN FOR H3PO4 ACTIVATION)

BASIC 

CATALYST

Magnesium

lignosulfonate

1. N2, 900°C 2 h

2. CO2, 750°C, 0.5 h

▪ Microporosity is conferred by lignin 

carbonization

▪ Mesoporosity is inherited from zeolite

▪ Carbonization of cation-containing 

lignosulfonates produces metal-loaded 

porous carbons

▪ CO2 activation increases surface area and 

metal content (18% Mg in this example)

▪ Small particle size and smooth distribution

▪ Lignin-H3PO4 mixtures can be extruded

▪ Air stabilization step was optimized to minimize lignin swelling

▪ Highly dense microporous monoliths with acid character

IPA decomposition results: 50% conv at 325 °C, acetone selectivity >95%
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Lignin
ρTavg

He

(g/cm3)

compression 

strength 

(MPa)

SBET

m2/g

Vt

cm3/g

Vmeso

cm3/g

C

(%)

O

(%)

P

(%)

Alcell 1054 0.49 0.02 87.3 9.0 3.7 1.77 7.56

Kraft 682 0.28 0.09 78.4 16.7 4.5 1.85 4.12
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Mixing with H3PO4

1:1 weight ratio
Kraft Lignin

Alcell Lignin

Air treatment

3ºC/min, 250 ºC

1:1 

Mixing
Extrusion

Carbonization

IPA decomposition results: 50% conv at 250 °C, propylene selectivity >90%


