Application of Lignin & Future Perspectives

LignoCOST lignin conference

May 31 - June 3, 2022 in Wageningen (NL)

Richard Gosselink, Gijs van Erven, Ted Slaghek, Arjen van Kampen

Contents

- Wageningen Food & Biobased Research
- Lignocellulose
 - Pretreatment / fractionation
 - Lignin production
 - Lignin last versus lignin first
- Lignin applications
- Future perspectives

Wageningen Food & Biobased Research

Applied research for sustainable innovations

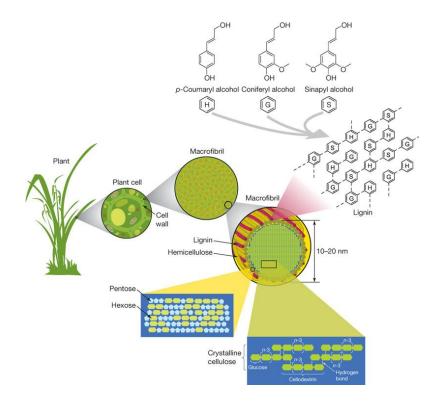
- In-depth knowledge of the entire agri-food chain
- Market oriented R&D approach
- Multi-disciplinary applied R&D project teams; 250 employees
- Up-scaling: from lab to pilot
- Connection with the University of Wageningen

Sustainable Food Chains

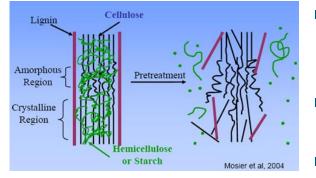
Biobased Products

Healthy & Delicious Foods

Research programmes


- Postharvest quality
- Food waste prevention & utilisation
- Food innovations for responsible choices
- Smart customised nutrition & health
- Protein for life
- Biobased chemicals & fuels
- Renewable materials
- Biorefinery

Lignocellulose



Biomass	Lignin content (%)
Wood	20-30
Straw, hemp, flax, miscanthus, bagasse	15-25
Digestate	5-25
Grass	5-15
Coconut husk	30-50
Wood bark	20-30

Rubin, 2008

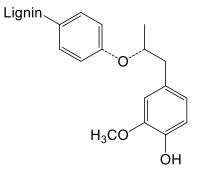
Pretreatment of lignocellulose

Fibres

- Pulp, Paper, Building materials, textiles
- Dissolving cellulose (e.g. textiles)
- Sugars

- Make the polysaccharides accessible to catalysts
- Using low/high pH, high temperatures, oxidative agents, mechanical forces (explosion)
- Catalysts for polysaccharide hydrolysis: enzymes or acid
- Micro-organisms can use the monosaccharides in fermentation processes
- Isolation of lignin (up to kg scale)
- Mild fractionation technologies

What is lignin and why interesting?


Lignin = 15-25% of lignocellulosic biomass

- Large side stream of paper & pulp industry and biofuel
 industry (>>70 M tonnes/y)
- Mainly used as energy source
- Natural binder
- Water resistent
- Aromatic ringstructure
- UV stabiliser
 - Resembles products derived from fossil resources

Production of lignin

Materials, fuels and chemicals

Lignin last \rightarrow lignin first

Traditional processes focus on cellulose or sugars AND lignin last

- Novel processes focus on lignin first and co-produce cellulose or sugars and high quality lignin
- Both options offers opportunities for added value and bulk applications

- Lignin from traditional processes \rightarrow bulk or larger markets?
 - Kraft, soda, hydrolysis
- Lignin from lignin first processes → added value & niche applications?
 - Solvent based
 - Lignin oil or lignin structures with native features

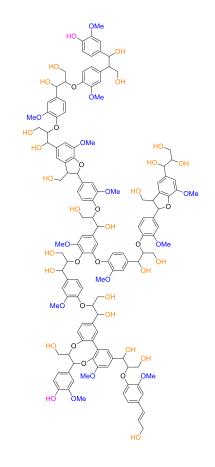
Examples of lignin applications

Application	Scale of operation	TRL	Main challenges
Bio-asphalt	Demonstration (>25 roads in NL) (50% substitution)	6-7	Costs reduction, industrial handling
Thermoset resins (PF type)	Several commercial (50% substitution) Demo/pilot	9 5-6	Reactivity
Polyurethanes	Pilot (30% substitution)	5-6	Viscosity, reactivity
Coatings (can, paper, packaging)	R&D	2-4	Functionality, performance
Marine / jet fuels	Pilot	5-6	Sulphur-free, NOx-free, viscosity
 Aromatic chemicals	R&D/pilot	2-4	Selectivity, coke formation

Drivers for lignin as bitumen substitute

- Lignin is a natural binder, UV stabiliser, anti-microbial properties
- Significant GHG savings & long term storage of biogenic carbon
- Solution for scarcity of bitumen in near future
- A way to guarantee the binder quality
- Substitution of fossil resource
- Adding extra functionality to asphalt
- Longer lifetime results in less maintenance (business case!)

Asphalt/bitumen market is large (90M tonnes each year based on bitumen)

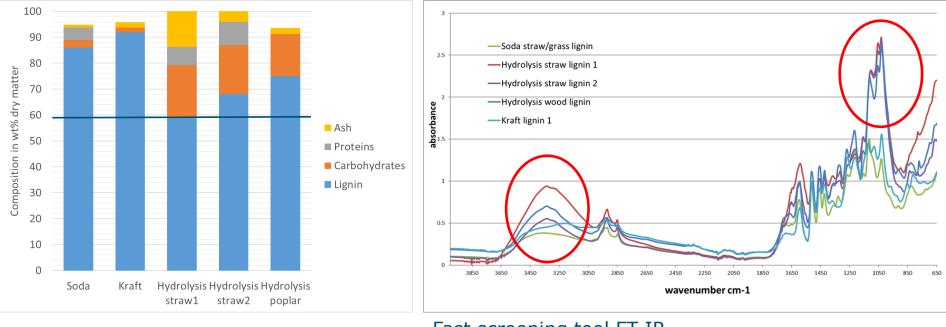


Lignin as bitumen substitute

- Lignine is natural binder
- Brown / black powder
- Relatively hydrophobic
- High carbon content (2/3 C; 1/3 O)
- Thermoplastic biopolymer (Ts \approx 100-150°C)
- UV-stabiliser
- Substitute larger fractions in bitumen

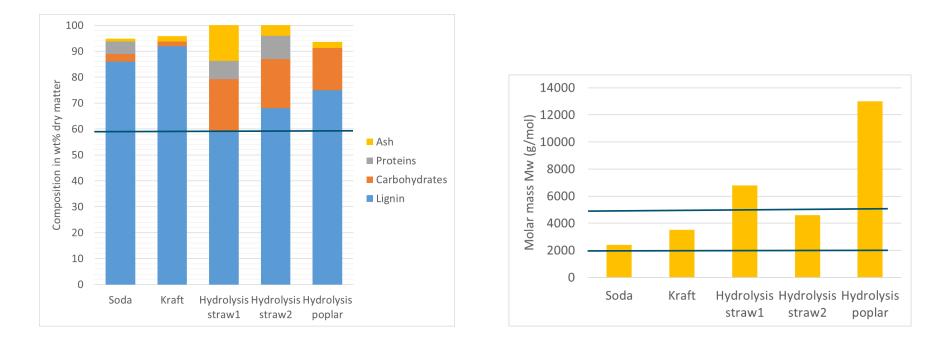
Road from lab to demonstration

- Literature and patents showed lignin and bitumen can be mixed
- Selection of lignin with suitable properties
- Need for dry lignin powder
- Link lignin properties to asphalt binder properties
- Lignin-bitumen binder processable at lower temperature (vegetable oil)
- Labscale tests
- Pilot tests (1 m²)


- Demo tests (10 m²)
- Demonstration roads

Selection of suitable lignin

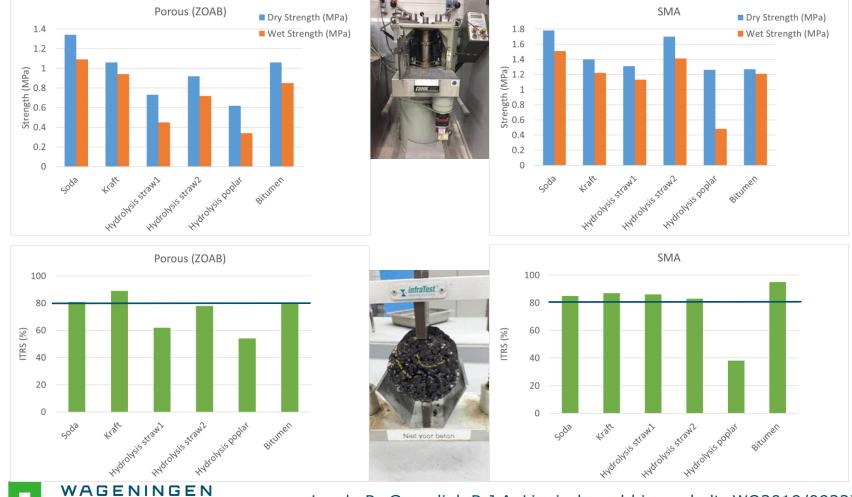
- Large number of technical lignins tested
 - Pulp & paper industry
 - Biorefinery industry (cellulosic ethanol, biochemicals)



Fast screening tool FT-IR

Selection of suitable lignin

- Large number of technical lignins tested
 - Pulp & paper industry
 - Biorefinery industry (cellulosic ethanol, biochemicals)



Labscale bio-asphalt tests

Porous asphalt (ZOAB)

NIVERSITY & RESEARCH

Stone mastic asphalt (SMA)

Landa P., Gosselink R.J.A., Lignin-based bio-asphalt, WO2019/092278

Labscale bio-asphalt tests

Some lignin-rich streams fails as asphalt binder

Labscale bio-asphalt tests

Stiffness and resistance to fatigue (4-points bending test)

	Hydrolysis lignin	Kraft lignin	Minimum requirement	Maximum requirement
Stiffness (MPa)	4441	6530	3600	11000
Fatigue resistance (Vermoeiing ɛ6)	107	124	>100	>130
Track formation Fc Max	<0,6	<0,2	0,2	4,0
Durability %	85	85	> 80	
Density (Kg/m ³)	2299	2355		

AC Surf. NEN-EN 12697-24/26

Demonstration Bio-asphalt in Zeeland

- 50% substitution of bitumen by soda lignin
- Manufacturing at lower temperature (130-140 °C, lower CO₂)
- Mixing lignin bitumen asphalt ingredients @ asphalt mill
- July 2015 1st lignin bio-asphalt road

After 6 years lignin asphalt behaves very good!

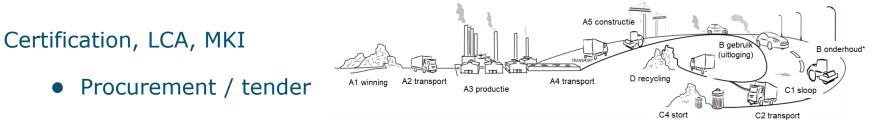
Lignin based cycling path Wageningen

Asfalt Kennis Centrum

- 3 Lignin selected
 - Soda
 - Kraft
 - Hydrolysis lignin
- Binder = 50% lignin / 50% bitumen
- Asphalt production in mill at 140°C
- 1 km cycling path at Wageningen campus
 - 10 tonnes of lignin
 - Production at 140°C
 - 7 trucks equals 220 tonnes bio-asphalt
 - Top layers in separate sections

Pavement

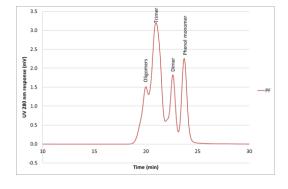
June 2017



Lignin based asphalt binder

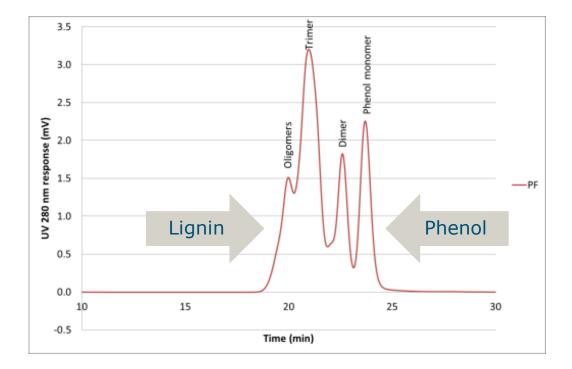
- 35-70% less CO2 emission (Moretti et al. 2022)
- Extra functionality (lower noise, lower rolling resistance) FIRST RESULTS
- Two technologies
 - Mixing @ asphalt mill (WFBR/AKC): >25 demonstration roads in NL
 - Blending lignin/bitumen binder (TNO/WFBR)

- Our final goal: development of a bitumen-free asphalt binder
 - Lignin modification, other Biobased components


P. Landa, Gosselink, R.J.A., Lignin-based bio-asphalt, WO2019/092278 D. van Vliet, Slaghek, T. et al., Bitumen composition, WO2015/137813

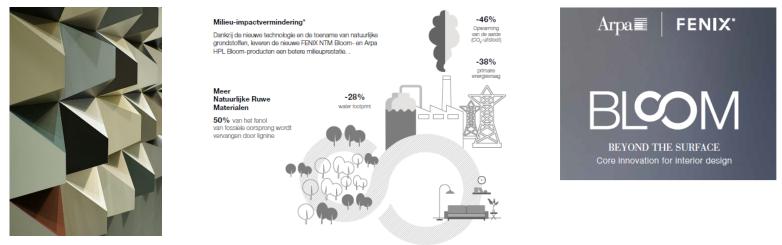
Thermoset resins

- Lignin is a natural glue
 - Binders are used in panel & boards
 - >1 M tonnes phenol formaldehyde (PF) resins globally
- Why lignin?
 - Substitution of expensive phenol part
 - Reduction in emission of formaldehyde
 - Lignin structure resembles PF structure
 - Softwood lignin favourable crosslinking (free ring position)
- Commercial 30% LPF in 2006; commercial 50% LPF in 2019 (Trespa)
- Challenge: reactivity, now further studied



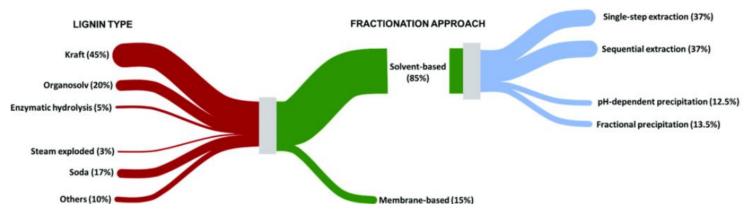
Thermoset resins

Alkaline SEC used to follow the resin synthesis



Thermoset resins

- 8 years collaboration with Nemho/Trespa/Arpa (NL/IT)
 - Resulted in a commercial interior HPL glued with a resin in which 50% phenol is substituted by lignin
 - Fenix Bloom product with 46% CO₂ emission reduction

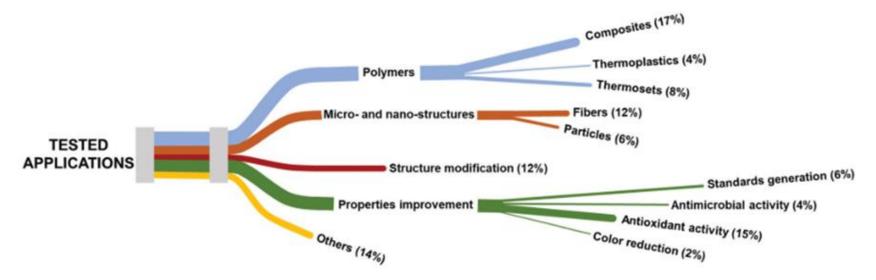


- We further develop this technology to get a 100% biobased resin
 - Production and modification to get a more reactive lignin

Lignin Fractionation: powerful tool

 Fractionation is a useful method for purification and adjustment of lignin functionality

• Different fractionation methods


- More defined (homogeneous) lignin structures
- Higher functionality

Green Chemistry, 2020 (15), 4722 Green Chemistry, 2020 (22), 7448

Uses of fractionated lignin

- Fractions used as functional ingredients in various applications
 - Often for anti-oxidant properties
 - But also for insect repellent properties

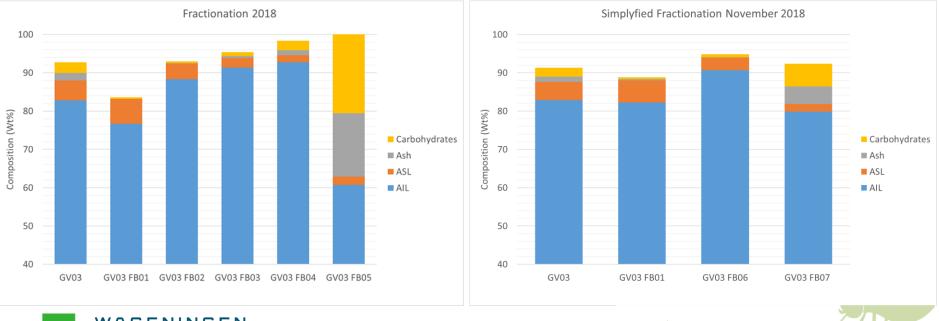
Green Chemistry, 2020 (15), 4722 Composites Part C: Open Access 2020 (2), 100044

Solvent fractionation

- Successive solvent fractionation with solvents of increasing Hansen solubility parameters (increasing polarity)
- First process with 4 solvents @ room temperature @ kg scale
 - Including solvent recovery
- Second process with 2 solvents only ethylacetate, ethanol

Soda Lignin fractions yields

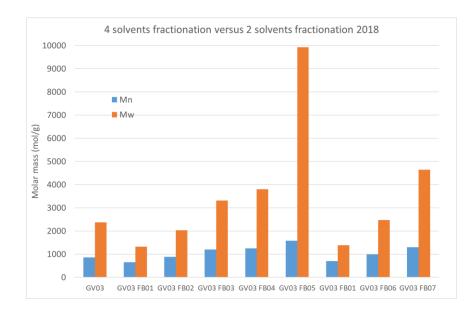
Fraction	Code	Yield (% dry lignin)	Yield (% dry lignin)
Unfractionated	GV03		
Ethylacetate soluble (FB01)	GV03 FB01	31	32
Ethanol soluble (FB06)			34
Butanone soluble (FB02)	GV03 FB02	19	
Methanol soluble (FB03)	GV03 FB03	23	
Acetone/water soluble (FB04)	GV03 FB04	9	
Insoluble fraction (FB07)	GV03 FB05	17	34


Solvent fractionation of GV03

4 solvents fractionation versus 2 solvents fractionation

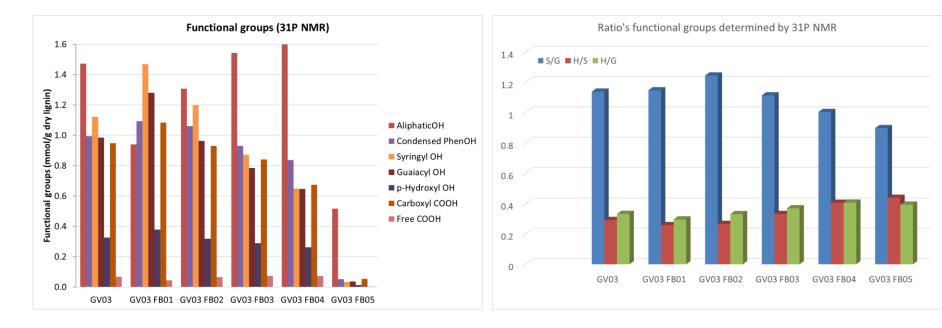
Lignin ethylacetate fractions (FB01) are comparable in composition and molar mass

Ethanol fraction (FB06) is rather pure, but a higher molar mass


Residual 2nd fractionation (FB07) has a higher yield and less impurities

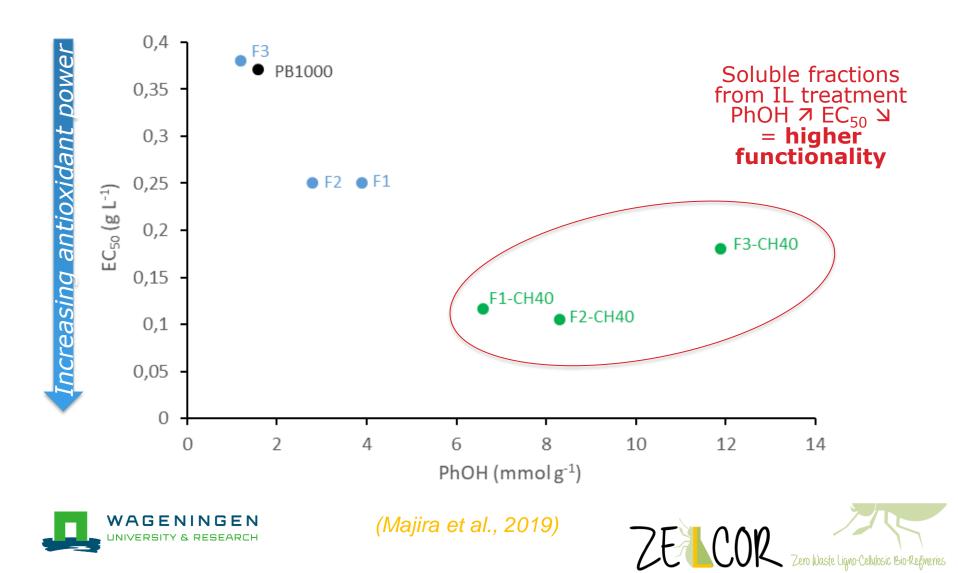
Solvent fractionation of GV03

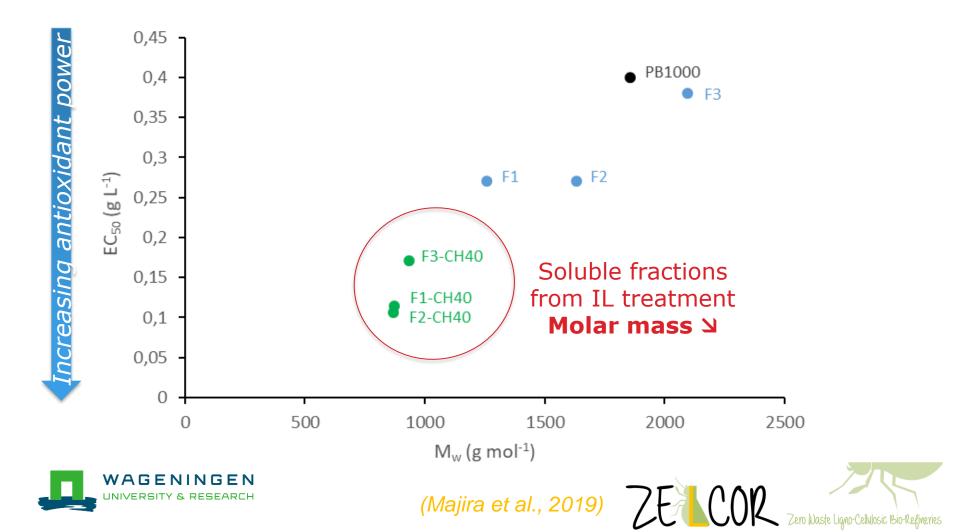
Lignin fractions (FB01) comparable in Mw FB06 (ethanol) higher in Mw than FB02 (MEK) FB07 lower in Mw than FB05



Solvent fractionation of GV03

Functional group distribution upon fractionation determined by ³¹P NMR


In ethylacetate fraction (FB01) phenOH


Zero Waste Liano-Cellulosic Bio-Refineries

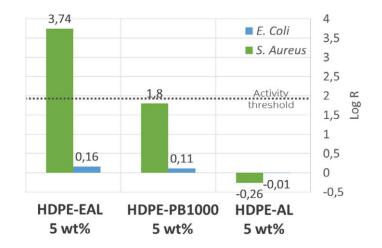
Antioxidant versus phenOH content

Antioxidant versus molar mass

Cascading approach conclusions

- Combined fractionation and IL treatment lead to fractions with higher functionality
- Adjustment of molar mass, purity, phenolic OH groups
- Antioxidant properties increased with factor 3-5
- Proof of concept achieved
- Valorization of lignin towards added value applications
- TRL 2-3
- Scalability

Development of new applications


As functional component in polymers

- Lignin shows antioxidant, antimicrobial, insect repellent properties to HDPE films
- Higher phenol content enhance the lignin antioxidant and antimicrobial effects
- Insect repellence is obtained at 2 wt % lignin ethyl acetate extract in HDPE
- Lignin ethyl acetate extract is a good candidate for food protection packaging

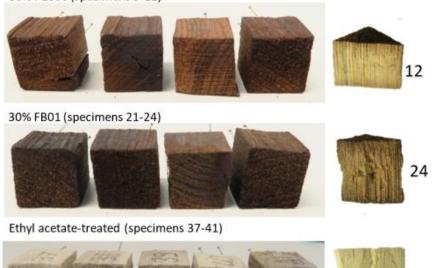
number of insects in the treated zone.			
Sample code	N-insects	Effect	
HDPE ref HDPE-AL 2 wt% HDPE-PB1000 2 wt%	4.2 ^a 6.7 4.55 ^{a,b}	No repellence (4-6) Attractant (>6) No repellence (4-6)	
HDPE-EAL 2 wt%	3.2	Repellence (<4)	

Insect repellence results on Sitophilus oryzae measured as the

Vachon et al. Use of lignin as additive in polyethylene for food protection: insect repelling effect of an ethyl acetate phenolic extract, 2020

Lignin fraction for wood preservation

- Application to preserve (*alum treated*) archaeological wood
- Ethyl acetate fraction (lower molar mass; higher functionality)
- Non-aqueous solvent (no leaching salts)
- Impregnation
- Physical properties
- Acid induced crosslinking



Lignin fraction for wood preservation

Impregnation

30% P1000 (specimens 9-12)

- More in-depth impregnation with ethylacetate fraction
- Lignin gives a harder wood object
- Potential to develop a wood consolidant based on lignin

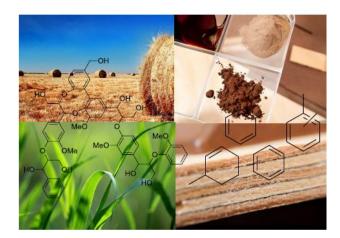
37

Conclusions

- Lignin has large potential to be used in materials and for chemicals
- Only using it for energy hampers its full potential
- Need for larger volume lignin production
 - Constant quality at reasonable costs
- Focus both on bulk and niche applications
 - Need for demonstration projects / products
- Short-medium term options: in materials such as bio-asphalt, resins, additives for polymers/composites
- Longer term options: archaeological wood preservation, bio-aromatics

Acknowledgements

- Lignin team WFBR: Ingrid Haaksman, Jacinta van der Putten, Alniek van Zeeland, Lionard Joosten, Jacqueline Donkers, Daan van Es, Gijs van Erven, Guus Frissen, Ted Slaghek, Richard Gosselink
- INRAE team: Amel Majira, Florian Pion, Véronique Aguié-Béghin, Betty Cottyn, Stéphanie Baumberger
- All partners from the Zelcor project
- All partners from the Oseberg project
- Partners from the bio-asphalt projects: AKC, H4A, Roelofs, NTP, University of Utrecht and others



Thank you for your attention

Lignine

Groene grondstof voor chemicaliën en materialen

JAN VAN DAM, PAULIEN HARMSEN, HARRIËTTE BOS, Richard Gosselink

Richard.Gosselink@wur.nl

